Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Infect Dis ; 131: 87-94, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2250705

ABSTRACT

OBJECTIVES: The World Health Organization priority zoonotic pathogen Middle East respiratory syndrome (MERS) coronavirus (CoV) has a high case fatality rate in humans and circulates in camels worldwide. METHODS: We performed a global analysis of human and camel MERS-CoV infections, epidemiology, genomic sequences, clades, lineages, and geographical origins for the period January 1, 2012 to August 3, 2022. MERS-CoV Surface gene sequences (4061 bp) were extracted from GenBank, and a phylogenetic maximum likelihood tree was constructed. RESULTS: As of August 2022, 2591 human MERS cases from 26 countries were reported to the World Health Organization (Saudi Arabia, 2184 cases, including 813 deaths [case fatality rate: 37.2%]) Although declining in numbers, MERS cases continue to be reported from the Middle East. A total of 728 MERS-CoV genomes were identified (the largest numbers were from Saudi Arabia [222: human = 146, camels = 76] and the United Arab Emirates [176: human = 21, camels = 155]). A total of 501 'S'-gene sequences were used for phylogenetic tree construction (camels [n = 264], humans [n = 226], bats [n = 8], other [n=3]). Three MERS-CoV clades were identified: clade B, which is the largest, followed by clade A and clade C. Of the 462 clade B lineages, lineage 5 was predominant (n = 177). CONCLUSION: MERS-CoV remains a threat to global health security. MERS-CoV variants continue circulating in humans and camels. The recombination rates indicate co-infections with different MERS-CoV lineages. Proactive surveillance of MERS-CoV infections and variants of concern in camels and humans worldwide, and development of a MERS vaccine, are essential for epidemic preparedness.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Camelus , Phylogeny , Middle East/epidemiology , Saudi Arabia/epidemiology , Genomics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary
2.
BMJ Glob Health ; 8(1)2023 01.
Article in English | MEDLINE | ID: covidwho-2223654

ABSTRACT

Unexpected pathogen transmission between animals, humans and their shared environments can impact all aspects of society. The Tripartite organisations-the Food and Agriculture Organization of the United Nations (FAO), the World Health Organization (WHO), and the World Organisation for Animal Health (WOAH)-have been collaborating for over two decades. The inclusion of the United Nations Environment Program (UNEP) with the Tripartite, forming the 'Quadripartite' in 2021, creates a new and important avenue to engage environment sectors in the development of additional tools and resources for One Health coordination and improved health security globally. Beginning formally in 2010, the Tripartite set out strategic directions for the coordination of global activities to address health risks at the human-animal-environment interface. This paper highlights the historical background of this collaboration in the specific area of health security, using country examples to demonstrate lessons learnt and the evolution and pairing of Tripartite programmes and processes to jointly develop and deliver capacity strengthening tools to countries and strengthen performance for iterative evaluations. Evaluation frameworks, such as the International Health Regulations (IHR) Monitoring and Evaluation Framework, the WOAH Performance of Veterinary Services (PVS) Pathway and the FAO multisectoral evaluation tools for epidemiology and surveillance, support a shared global vision for health security, ultimately serving to inform decision making and provide a systematic approach for improved One Health capacity strengthening in countries. Supported by the IHR-PVS National Bridging Workshops and the development of the Tripartite Zoonoses Guide and related operational tools, the Tripartite and now Quadripartite, are working alongside countries to address critical gaps at the human-animal-environment interface.


Subject(s)
One Health , Animals , Humans , World Health Organization , Global Health , United Nations , International Health Regulations
3.
Lancet ; 401(10377): 673-687, 2023 02 25.
Article in English | MEDLINE | ID: covidwho-2184593

ABSTRACT

The COVID-19 pandemic has exposed faults in the way we assess preparedness and response capacities for public health emergencies. Existing frameworks are limited in scope, and do not sufficiently consider complex social, economic, political, regulatory, and ecological factors. One Health, through its focus on the links among humans, animals, and ecosystems, is a valuable approach through which existing assessment frameworks can be analysed and new ways forward proposed. Although in the past few years advances have been made in assessment tools such as the International Health Regulations Joint External Evaluation, a rapid and radical increase in ambition is required. To sufficiently account for the range of complex systems in which health emergencies occur, assessments should consider how problems are defined across stakeholders and the wider sociopolitical environments in which structures and institutions operate. Current frameworks do little to consider anthropogenic factors in disease emergence or address the full array of health security hazards across the social-ecological system. A complex and interdependent set of challenges threaten human, animal, and ecosystem health, and we cannot afford to overlook important contextual factors, or the determinants of these shared threats. Health security assessment frameworks should therefore ensure that the process undertaken to prioritise and build capacity adheres to core One Health principles and that interventions and outcomes are assessed in terms of added value, trade-offs, and cobenefits across human, animal, and environmental health systems.


Subject(s)
COVID-19 , One Health , Animals , Humans , Global Health , Ecosystem , Emergencies , Pandemics
5.
BMJ Glob Health ; 6(7)2021 07.
Article in English | MEDLINE | ID: covidwho-1295212

ABSTRACT

The COVID-19 pandemic is a devastating reminder that mitigating the threat of emerging zoonotic outbreaks relies on our collective capacity to work across human health, animal health and environment sectors. Despite the critical need for shared approaches, collaborative benchmarks in the International Health Regulations (IHR) Monitoring and Evaluation Framework and more specifically the Joint External Evaluation (JEE) often reveal low levels of performance in collaborative technical areas (TAs), thus identifying a real need to work on the human-animal-environment interface to improve health security. The National Bridging Workshops (NBWs) proposed jointly by the World Organisation of Animal Health and World Health Organization (WHO) provide opportunity for national human health, animal health, environment and other relevant sectors in countries to explore the efficiency and gaps in their coordination for the management of zoonotic diseases. The results, gathered in a prioritised roadmap, support the operationalisation of the recommendations made during JEE for TAs where a multisectoral One Health approach is beneficial. For those collaborative TAs (12 out of 19 in the JEE), more than two-thirds of the recommendations can be implemented through one or multiple activities jointly agreed during NBW. Interestingly, when associated with the WHO Benchmark Tool for IHR, it appears that NBW activities are often associated with lower level of performance than anticipated during the JEE missions, revealing that countries often overestimate their capacities at the human-animal-environment interface. Deeper, more focused and more widely shared discussions between professionals highlight the need for concrete foundations of multisectoral coordination to meet goals for One Health and improved global health security through IHR.


Subject(s)
COVID-19 , One Health , Animals , Humans , International Cooperation , International Health Regulations , Pandemics , SARS-CoV-2
6.
PLoS One ; 16(6): e0245312, 2021.
Article in English | MEDLINE | ID: covidwho-1256013

ABSTRACT

Collaborative, One Health approaches support governments to effectively prevent, detect and respond to emerging health challenges, such as zoonotic diseases, that arise at the human-animal-environmental interfaces. To overcome these challenges, operational and outcome-oriented tools that enable animal health and human health services to work specifically on their collaboration are required. While international capacity and assessment frameworks such as the IHR-MEF (International Health Regulations-Monitoring and Evaluation Framework) and the OIE PVS (Performance of Veterinary Services) Pathway exist, a tool and process that could assess and strengthen the interactions between human and animal health sectors was needed. Through a series of six phased pilots, the IHR-PVS National Bridging Workshop (NBW) method was developed and refined. The NBW process gathers human and animal health stakeholders and follows seven sessions, scheduled across three days. The outputs from each session build towards the next one, following a structured process that goes from gap identification to joint planning of corrective measures. The NBW process allows human and animal health sector representatives to jointly identify actions that support collaboration while advancing evaluation goals identified through the IHR-MEF and the OIE PVS Pathway. By integrating sector-specific and collaborative goals, the NBWs help countries in creating a realistic, concrete and practical joint road map for enhanced compliance to international standards as well as strengthened preparedness and response for health security at the human-animal interface.


Subject(s)
Global Health , Goals , International Cooperation , International Health Regulations , Public Health , Animals , Disease Outbreaks/prevention & control , Humans , Zoonoses
SELECTION OF CITATIONS
SEARCH DETAIL